- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report on a measurement of elastic electron scattering on argon performed with a novel cryogenic gas-jet target at the Mainz Microtron accelerator MAMI. The luminosity is estimated with the thermodynamical parameters of the target and by comparison to a calculation in distorted-wave Born approximation. The cross section, measured at new momentum transfers of 1.24 $$\hbox {fm}^{-1}$$ and 1.55 $$\hbox {fm}^{-1}$$ is in agreement with previous experiments performed with a traditional high-pressure gas target, as well as with modernab-initiocalculations employing state-of-the-art nuclear forces from chiral effective field theory. The nearly background-free measurement highlights the optimal properties of the gas-jet target for elements heavier than hydrogen, enabling new applications in hadron and nuclear physics.more » « less
-
Kolar, T; Cosyn, W; Giusti, C; Achenbach, P; Ashkenazi, A; Böhm, R; Bosnar, D; Brecelj, T; Christmann, M; Cohen, E O; et al (, Physical Review C)Free, publicly-accessible full text available December 1, 2025
-
Kolar, T; Achenbach, P; Christmann, M; Distler, MO; Doria, L; Eckert, P; Esser, A; Giusti, C; Geimer, J; Gülker, P; et al (, Physics Letters B)
An official website of the United States government
